IR Book | 2024

<u>s</u>

A LIN

8

ST PHARM

Technology Driven Gene therapy CDMO From Oligonucleotide to xRNA

Revenue Breakdown & Margin

Financial Statement

'23.4Q: Revenue 119.7 Billion KRW, Operating Profit: 21.4 Billion KRW 2023 Annual: Revenue 284.1 Billion KRW, Operating Profit: 33.4 Billion KRW

Strong growth from both total revenue and high-margin Oligonucleotide CDMO business drove notable improvements in operating profit and margin.

Results	202	22	202	23	YoY CI	nange
(Unit: 1 Billion KRW)	4Q	Annual	4Q	Annual	4Q	Annual
Revenue	100.4	249.3	119.7	284.1	19.3%	14.0%
Cost of Goods Sold	69.6	160.4	79.5	172.2	14.3%	7.4%
Gross Profit	30.8	88.9	40.2	111.9	30.5%	25.8%
SG & A	21.6	71.1	18.8	78.5	-13.0%	10.4%
R&D Expenses	8.2	26.3	6.4	30.4	-21.1%	15.8%
Operating Profit	9.2	17.9	21.4	33.4	132.2%	87.3%
Net Profit	2.1	17.5	10.1	17.5	387.9%	0.0%
Gross Profit Margin	69.3%	64.3%	66.4%	60.6%	-2.9%p	-3.7%p
Operating Profit Marin	9.2%	7.2%	17.9%	11.8%	8.7%p	4.7%p
EBITDA Margin	13.2%	15.0%	20.2%	16.4%	7.0%p	1.4%p

• ST PHARM History

2010	Incorporation as Subsidiary of Dong-A Socio Group (comp. name to ST PHARM)
2011	HBV treatment selected as a world-class product (Ministry of Knowledge Economy)
2015	Construction of Banwol Plant 1, Acquisition of Banwol Plant 2 Acquired Certification: FDA (USA), PMDA (Japan) cGMP
2016	Establishment of ST America Research <i>(NJ, USA)</i> KOSDAQ(237690) IPO, Presidential Award for Innovative Enterprise
2018	Global Growth Excellence Leadership Award (Frost & Sullivan) Completion of Oligonucleotide Production Facility (Oligo Plant 1)
2019	Selected as Excellent Environmental Management Site (Banwol) Acquired AnaPath Services & Research (Non-Clinical CRO) STP1002 (Anti-cancer Drug) Phase 1 Clinical Trial (USA) IND
2020	Roche CDMO Award 2019 STP0404 (AIDS Treatment Drug) Phase 1 Clinical Trial (EU) IMPD
2021	Establishment of LEVATIO / VERNAGEN (mRNA & CAR-NKT) Construction of mRNA GMP (Mid-scale) Production Facility
2022	Best Asia-Pacific CDMO for Oligonucleotides CDMO, Corporate of the Year(CDMO) (Frost & Sullivan) Expansion of Oligo Plant 1 (Total Cap. of 6.4 Mole) Acquired Certification: FDA cGMP(NAI) – Banwol Campus
2023	Completion of of R&D Innovation Center (Banwol) FDA cGMP Regular Due Diligence (Banwol) Start construction of Oligo Plant 2 (Expected completion: H2 '25) Completion of mRNA GMP (Commercial scale) Production Facility

Supply Record

000											
900	S	upp	lier	of 1	Thyn	nidine (dT) (GSK, BMS)					
	″	Woi	rld's	Lai	rgesi	t Thymidine (dT) Supplier"					
000		Si	Inn	lier	of Al	PL for World's First HIV/AIDS Treatment					
002		(Z	ido'	idovudine, GSK)							
004			W	'orla	d's La	argest Monomer (Nucleoside) Supplier					
			Sı (T	upp elbi	lier c ivudi	of API for Hepatitis B Treatment ine, Novartis)					
2007				Sı Sa	uppli ampl	ier of API for Hepatitis C Treatment Clinical le (Roche)					
2012				Su BN	uppli MS)	ier of API for HIV/AIDS Treatment (Atazanavi,					
2013					Su Tre	ipplier of API for World's First Hepatitis C eatment (Gilead)					
2015											
020					Oli	<i>igo API</i> Supplier (Early Clinical Stage)					
2021					Oli	ligo API Supplier (Late Clinical Stage)					
023						<i>Oligo API</i> Supplier (Commercial Scale) <i>mRNA LNP Lipid</i> Supplier					

Introduction

Global Inspection & Due Diligence Record

CDMO Company Specializing from Oligonucleotide to xRNA Therapeutics Incorporation of CDMO Value Chain from Non-clinical Animal Testing to Commercial Scale Production

CDMO Business Overview

ST PHARM CDMO Business Expansion

- Zidovudine (HIV/AIDS)
- Sofosbuvir (Hepatitis C)

Antisense

• Aptamers

Decoys

siRNA/microRNA

Other novel oligos

2008. Oligonucleotide

- Antisense (ASO)
- siRNA / miRNA
- Aptamer
- Decoys

2018. Polynucleotide

• mRNA

• circRNA

• samRNA (self amplifying)

Market Overview

Overview

RNA Therapeutic is 3rd-Gen therapy that allows a more fundamental treatment by silencing or inhibiting expression of disease-inducing protein Only 3% of all DNAs is transcribed to proteins via mRNA The remaining 97% is transcribed to RNA Most RNA functions unidentified > Great potential RNA-related treatments

RNA-based Therapeutics

Mechanism: Inhibits expression of harmful proteins RNA Types: Anti-sense (ASO), siRNA, miRNA etc. Examples : Spinraza (Ionis / Biogen) Spinal Muscular Atrophy Leqvio (Alnylam / Novartis) Hereditary Hyperlipidemia

Characteristics of RNA-based Therapeutics

Strengths : High selectivity over target proteins Quick & cost effective development ► ≥ 2yr of Pre-clinical phase Very low tolerance Excellent drug persistence ► Leqvio 6-months Lower drug price ► Leqvio ≥ U\$4,000 while Repatha = U\$5,850

Weaknesses: Difficulty in delivery to organs/cells apart from liver or brain Require delivery technology such as LNP etc.

> New methods: Avidity's Antibody oligonucleotide conjugates Difficulty in mass production ⇒ Few capable CDMO companies

Central Dogma & Non-coding DNA

HOW RNA-BASED THERAPEUTICS WORK

Alnylam's siRNA Clinical Trial Success Rate : 62.5%

High-Yield Productivity of Alnylam RNAi Therapeutics Platform Comparison of Historical Industry Metrics to Alnylam Portfolio¹

Probability of Success (POS) by Phase Transition

Growth Potential of RNA-based Therapeutics

Liver delivery technology "Gal-Nac" developed in 2018

Therapeutic areas extended to Auto-immune Diseases, Growing R&D investments in RNA-based therapy pipelines by major pharmaceuticals Blockbuster RNA-based treatments expected to commercialize starting in 2024 > Surge in Oligonucleotide demand

Market Outlook

Global RNA-based Therapeutics Global Market Size

: U\$5 Bil. (6.5 Tril. KRW) (2021) U\$25.7 Bil. (32.6 Tril KRW) (2030) Active Global Pharma's Investment: L/I (from Ionis, Alnylam etc.) In-house R&D

Demand for Oligonucleotides > 12T/yr if all pipelines are commercialized

Oligonucleotide-based pipelines for Chronic Diseases: Overview & Demand Forecast Injection Guide Dosing Target Patients Annu. Demand Therapeutic Therapeutics Stage Target Company Areas (ma) Interval (annu.) (kg) CVD Apo(a) Р3 80 12/yr 1,000,000 960 Pelacarsen CVD ApoCIII Ρ3 50 12/yr 1,000,300 600 Olezarsen IONIS-AGT-Lrx AGT P2 80 540,675 346 Hypertension 8/yr ION449 Dyslipidemias PCSK9 Ρ2 120 2/yr 1,380,000 497 lonis (AZD-8223) ION224 NASH DGAT2 P2 80 12/yr 640,000 614 **IONIS-MAPTrx** Alzheimer TAU P2 100 4/yr 1,500,000 600 P2 Hepatitis B HBV 300 6/yr 1,000,000 1800 Bepirovirsen Hyperlipidemia PCSK9 Comm. 300 Leqvio(inclisiran 2/yr 1,380,000 828 AGT P2 600 2/yr 1,000,000 Alnylam Zilebesiran Hypertension 1200 ALN-HBV02 Hepatitis B HBV Ρ2 600 2/yr 500,000 200 (VIR-2218) DCR-HBVS P2 Dicerna Hepatitis B HBV 360 4/yr 500,000 720 (RG-6346) ARO-ANG3 P2 1,380,000 Hyperlipidemia ANGPTL3 200 2/yr 552 ARO-HSD NASH HSD17_{B13} P2 200 2/yr 1,000,000 400 Arrow head 3/yr JNJ-3989 Hepatitis B HBV P2 400 500,000 600 AMG890 CVD LP(a) P2 200 4/yr 1,000,000 800 (olpasiran)

(Demand based on 10~20% of target patients in developed countries such as U.S., Europe, China, Japan, etc.)

[Source : Samsung Securities]

mRNA Vaccine Market Outlook & Potential

Global mRNA Vaccine Market Outlook: U\$11.3 Bil. (14 Tril. KRW) (2022) U\$27.7 Bil. (36 Tril. KRW) (2032) (Source: Global Market Insight)

Characteristics of mRNA-based Therapeutics

Safety & Efficacy: High selectivity over target protein No need to penetrate nuclear membrane = lower risk Productivity: Enables rapid scale-up and development High potential for expanding therapeutic areas (Platform-like) potential to replace Antibody treatments

mRNA VACCINE MARKET

Global Revenue Outlook for mRNA Technology Market (risk-adjusted)

RNA-based Therapeutics (continued)

자료: IQVIA Institute(Nov 2022)

CAPEX on New Modality based Therapeutics to reach U\$27 Bil. By 2027

[[]Source : IQVIA Institute(Nov 2022)]

STP Operating Profit Margin (separated FS)

Planned New Pipelines for 2024

Client	Indication	Client	Indication
Client G	Hepatitis B	Client H	Hemophilia
Client G	Alzheimer's	Client I	Parkinson's
Client G	Huntington's	Client J	Epilepsy
Client E	Antitrypsin Deficiency	Client K	Unknown
Client A	Unknown	Client L	Hyperlipidemia
Client A	Liver-target siRNA	Client M	Skin Carcinoma

Convergence & Enhanced Delivery Technology Expansion of Targetable Area (from Rare to Chronic Diseases & Anticancer)

R&D Trends of 2023

- 3,150 Pipelines throughout all stages of clinical trials
- 52% of Pipelines initiated in 2022. 229 new substances in 2023 alone (Oligo 123, mRNA 106)
- Over 1,000 mRNA vaccine pipelines under development
- Anticancer Oligo-based Therapeutics: 250 (incl. clinical & non-clinical)
- Anticancer mRNA Therapeutics : 193 (incl. clinical & non-clinical)

RNA-based Therapeutics are quickly entering Anti-cancer areas

Total of 229 **NEW** Candidate Substances Discovered in 2023

Novartis

- Expanded new drug development agreement with Ionis for ASO based CVD therapies beyond Pelacarsen

- Acquired Swiss DTx Pharma for its siRNA platform & delivery technology for U\$1 Billion

- (Jan.2024), joint new drug development agreement with Shanghai Argo Biopharma for CVD and metabolic disease therapies

Roche

- L/I Oligo-based Zilebesiran (hypertension) from Alnylam (Nasdaq: ALNY) for U\$ 2.8 Billion
- (Oct.2019), L/I HBV treatment pipeline from Dicerna in 2019 for U\$ 1.7 Billion

- (Sept.2023), expanded joint development with Ionis for ASO-based Alzheimer & Huntington disease therapies

GSK

- (Feb.2023) CEO announced "end investment in cell and gene therapy" and focus on "oligo strategy"
- (Dec. 2022) collaboration with Wave Life Sciences for oligo-based pipelines development + U\$ 1,700 Million investment of
- (Jul. 2023) L/I nucleic acid encoding technology from Elsie Biotechnologies
- (Nov. 2023) L/I HBV treatment pipeline JNJ-3989 from J&J

Novo Nordisk

- (Nov. 2021) Acquired Dicerna Pharmaceuticals for U\$3.3 Billion
- (2021 Annual Report) "apply RNAi tech across all therapy areas"
- (Jul. 2023) Collaboration with Eleven Therapeutics for nucleic acid encoding technology

Lilly

- (May. 2021) Joint development of saRNA platform with MiNA Therapeutics
- (Sept. 2021) Invested U\$ 1.25 Billion + RNA editing research collaboration with ProQR

- (Feb. 2022) Invested U\$700 Million on constructing "Institute for Genetic Medicine for study of RNA & DNA

• DTx's FALCON (Oligo + Fatty Acid)

• Alnylam Delivery Tech. : GalNAc (Liver), C16 (CNS), Double siRNA

Commercialization Forecasted in 2024: Imetelstat (MDS) [2025 ~ for MF indication]

Total Addressable Market (TAM) for LR MDS and R/R MF >\$7B by 2033 (US/EU4/UK)*

Driving to establish imetelstat as standard of care in LR MDS and R/R MF

- 7.5mg/month (monthly injection), 6,825mg/year (for 70kg-adult)
- Observed 8-week TI in 42% of all patients.
- Median duration of TI being 88-week
- Patients in 5 regions (incl. US, Europe) > 33,000

```
137kg ~ 273kg required for 20,000 ~ 40,000 patients
```

OS Improvement in Real-World Data Study of Refractory MF Patients Median OS More Than Double Compared to BAT Treatment in Real-World Data (RWD)

Study designed to evaluate imetelstat benefit vs. BAT treatment in JAKi refractory MF patients

 IMbark Phase 2 data compared to RWD from a closelymatched cohort of patients at the Moffitt Cancer Center who had discontinued ruxolitinib and were subsequently treated with best available therapy (BAT)

Improvement in overall survival (OS) and lower risk of death for imetelstat vs. BAT in RWD study

- Imetelstat: 33.8 mos median OS
- BAT RWD: 12.0 mos median OS
- 65% lower risk of death with imetelstat compared to BAT from RWD

Data support IMpactMF Phase 3 trial design

§geron

Mbar

ClincialTrials.ac

- [Phase 3 Trial Data] 9.4mg/kg, 11,405mg/year required
- 33.8 Months of median overall survival(OS)
- (Median OS of current best therapy: 12 months)
- Median OS of JAKi refractory MF patients: 14 ~ 16 months
- US Patients > 11,000; 114kg required for 10,000 patients

Commercialization Forecasted in 2024: Olezarsen (FCS*) [2025 for TG Target CVD(SHTG) indication] * familial chylomicronemia syndrome

Olezarsen (FCS, ASO)

Olezarsen Treatment Resulted in Robust and Significant Reduction in Serum APOCIII Levels at 6 and 12 Months^{1,2}

[Source : Ionis]

- FCS is induced by extremely high level of triglyceride
- Phase 3 results showed significant reduction of APOC3 (triglyceride related protein) for 6/12-months (max 81.3% after 12-months)

Olezarsen (CVD, ASO)

Olezarsen Phase 2 Results

Setting a New Standard for Triglyceride Management

Phase 2 Study

- Dose-ranging, placebo-controlled study in 114 patients with CVD and TGs 200-500mg/dL
- Primary endpoint: percentage change in fasting triglycerides at 6 months

Results

- Met primary endpoint of significant triglyceride lowering
- Favorable safety and tolerability profile

Next Steps

 Phase 3 studies in FCS and SHTG with 50mg and 80mg monthly dose underway

[Source : lonis]

- [Phase 3 Trial Data] 80mg/month (monthly injection), 960mg/year required for each patient
- Phase 2 Trial results showed 60% reduction in triglyceride levels
- US Patients > 3 Mil., 1T ~ 1.9T required for 1 ~ 2 Mil. patients

Commercialization Forecasted in 2025 ~ 2026

JNJ-3989 (Chronic Hepatitis B/HBV, siRNA) [L/O to GSK]

AROHBV1001: Effect of JNJ-3989 and NA treatment on reduction in HBsAg

Treatment with JNJ-3989 and NA resulted in pronounced HBsAg reductions

IBsAg, hepatitis B surface antigen; IU international unit; NA, nucleos(t)ide analogue; vir, virologically; surpr, suppressed

lanssen

r Vaccines

- [Phase 2 Trial Data] 1,200mg/year required for each patients
- 90% reduction in HBsAG (Hepatitis B Surface Antigen) lasting for 392 days
- Hepatitis B Patients (Worldwide) > 3,000 Mil.,
- 1.2T ~ 2.4T required for 1 ~ 2 Mil. Patients
- Synergy expected with Bepirovirsen. VIR-2218* to be potential rival drug

Bepirovirsen (Chronic Hepatitis B, ASO)

GSK & Isis collaboration targeting next generation of HBV medicines: functional cure

- Antisense approach taken to knock down immune suppressive antigens
- Entered collaboration with Isis Pharmaceuticals in 2010

 GSK contributed target, Isis provided platform & discovery
- Lead compound GSK3228836
 – Phase II start planned

2016

Note: GSK3228836 subject to exercise of option by GSK

[Source : GSK]

gsk

- [Phase 2b Trial Data] 1,800mg/year required for each patients
- "Functional cure" observed in 28% ~ 29% of patients (HBV DNA undetected)
- 1.8T ~ 3.6T required for 1 ~ 2 Mil. Patients

* Vir Biotechnology(Alnylam)'s HBV treatment pipeline under Phase 2 Trial

[[]Source : Arrowhead Pharmaceutical]

Commercialization Forecasted in H2. 2025

Pelacarsen (CVD, ASO)

Ph2b study demonstrated

- **98%** of CVD patients achieved Lp(a) levels ≤50mg/dL (guideline threshold for CVD) with pelacarsen 20mg once a week
- Dose-dependent Lp(a) reductions up to 80%
- Good tolerability and safety profile

[Source : Ionis]

- [Phase 2 Trial Data] 80mg/month (monthly injection), 960mg/year for each patients
- Phase 2b Trial result showed 98% reduction in CVD-inducing factor (Lp(a))
- Patients (Worldwide) > 8 Mil., 1T ~ 1.9T required for 1 ~ 2 Mil. patients

Zilebesiran (Hypertension, siRNA)

- [Phase 2 Trial Data] 600mg/6-months (2-time injection per year)
- 95% reduction observed in AGT (hypertension-inducing gene)
- Essential hypertension Patients (US) > 109 Mil.,
- 2.4T ~ 4.8T required for 2 ~ 4 Mil. patients

Business Overview

Our Oligonucleotide CDMO Edge

- Positioned within Global Top-3 Oligo CDMO company
- Integrated supply-chain from Monomer to Oligonucleotide
 - Cost-efficient, Consistent Quality, Sustainable Production
- Strong Track Record Since 1983 (≥ 15 years, incl. US & Eur.)

Expansion Projects

- Oligo Plant 1: Phase 1 & 2* completed in Jul. 2022
 - * investment & support from client
- Oligo Plant 2: Phase 1 from Aug. 2023 ~ H1. 2025

Global Awards & Records

- 2018 Global API Manufacturing Growth Excellence Leadership Award (Frost & Sullivan)
- Roche CDMO Award 2019

(Oligonucleotide New Drug segment: Global First)

- 2021 APAC Oligonucleotide CDMO Company (Frost & Sullivan)
- FDA NAI(No Action Indicated) cGMP Banwol Campus

ST PHARM Oligo Pipeline (Total ≥ 20 Pipelines)

Client	Indication	Stage				
Client	Indication	Phase1	Phase2	Phase3	Commercial	
Client A	Hyperlipidemia				•	
Client B	SMA				•	
Client C	MDS/MF/AML				•	
Client D	CVD					
Client D	Hereditary Angioedema					
Client A	CVD					
Client E	Chronic Hepatitis B					
Client D	Thrombosis					
Client F	Chronic Hepatitis B					
Client G	AMD					
Client G	Chronic Hepatitis B		•			

ST PHARM Oligo CDMO Revenue [U\$ 1 Mil., U\$1 = 1,300 KRW)

• Expansion projects to prepare for a fast-growing market with strong future demand

Oligopuelestide	2021	2022	Q2. 2025(Est.)	Q2. 2026(Est.)
Facilities	Plant 1	Plant 1 Phase 1 & 2 Expansion	Plant 2 Phase 1	Plant 2 Phase 2
No. of Line*	1	4	7	10
Total CAPA	2.0 mole (Approx. 330kg~1t)	6.4 mole (Approx. 1t-3.2t)	8~9 mole (Approx. 1.4t-4.6t)	12~14 mole (Approx. 2.3t-7t)

* No. of Line based on No. of Synthesizers

• View of Banwol Campus Facilities

• Yield (Production Efficiency) Improvements

Production	2021	2023	
Productivity	n Batch 43kg	n Batch 54kg (25% 🔺)	Synthesis Process & Outcome Purity Improvements
Production Period	n Batch Syn. & Pur. (27 Days)	n Batch Syn. & Pur. (19 Days, 29% ▼)	Skilled workers, Reduced cleaning term, etc.

- LPOS (Liquid Phase Oligonucleotide Synthesis)
 - Suitable for mass/commercial-scale production of Oligonucleotides

(Max. batch size x10)

- License contracted with 1 Global company for technology's exploitation
- Currently research cooperation with 2 Global Pharmaceuticals
- More sustainable than Solid Phase OS

LPOS

CDMO Research Innovations

SmartCap[®]

- Synthesis technology for mRNA stabilizer
- Registered S. Korea Patent (Oct. 2020)
 Ongoing registration for Global Patent
- +30 Capping Analogue
- Cost-efficient 5' capping price

CAP Library Screening System

- Customizable based on Client's need
- Higher gene expression

- > LNP Platform Establishment Strategy
- 1. LNP L/I (Genevant LNP)
- 2. Independent LNP Development
 - Developed and applied for patent in 2020
 - Begin establishing platform for mRNA CDMO
- 3. Innovating Next Generation LNP (STLNP®)
 - Found 2 types of candidates in pre-clinical stage
 - Aim to improve LNP stability and immune response

STLNP Animal Testing Results

- Observed 1.7 times higher mRNA delivery efficiency than Pfizer-BioNTech's (based on blood drug concentration)
- Observed higher siRNA delivery efficiency for all dose types than Pfizer-BioNTech's LNP

ST2104 Phase 1 Results – High Level of Neutralizing Antibody

Fig. 1: Neutralization of USA-WA1/2020 and variant SARS-CoV-2 viruses by BNT162b2-

- Day 0 (1st Vaccination), Day 28 (2nd Vacc.), Day 35 (+ 1 week), Day 56 (+ 4 weeks)
- Pfizer-BioNTech COVID-19 mRNA Vaccine: Day 56 Avg. PRNT₅₀ = 502
- STP2104: Day 56 *PRNT*₅₀ = 1,591 (Low Dose), 2,489 (High Dose)

[Approx. 3 ~ 4 times higher]

- STP2104 Positive Rate* of Neutralizing Antibody
- : Low Dose 100%, High Dose(50 $\mu g)$ 93%
- * Achieved when level of neutralizing antibody increases x4 vs. before injection

[Source: Nature, 'BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants' ('21.06.10)]

" From milligram to kilogram scale production"

> 1. R&D / Small scale production

Completion: Aug. 2020 Capacity : Pilot Scale

2. Mid-scale production (GMP)

Completion: May. 2021 Capacity: mg ~ g / month (10 Mil. doses / year)

> 3. Large / Commercial scale production (GMP)

Completion: Aug. 2023 Capacity: 100 ~ 120 g / month (35 Mil. ~ 100Mil. doses / year)

Vernagen's mRNA Vaccine Pipelines

			Discovery	Preclinical	Phas	se I
Category	Pathogen	Collaborator	2022	2023	2024	2025
Global Market Vacci	Shingles	Emory University				*
nes	RSV A/B	Emory University				*
Targeting viral pathogens t	Noro Virus	University of Michigan				
tions	HMPV	In-house		-		
	Nipah Virus	Duke-NUS				*
Highly Pathogenic a	YFV/ZKV/CHKV Combi	Simile Ltd.				*
nd Emerging Virus V	Heartland Virus	US-CDC				*
accines	SFTSV	Junbuk University				*
Targeting emerging, neglec	Monkeypox Virus	In-house				
potential viral pathogens	Sarbecovirus	CoVBIO			4	
	Influenza A/B	In-house			Candidate for Phase	s ready 1 bv 2025
Cancer Virus Vaccin	Epstein-Bar V	In-house				
es Targeting viral pathogens i nducing cancer potential	HPV-9	In-house				
	* WHO & CEPI Priority vii	ruses				

Development of circRNA Platform

- Levatio's circRNA has a 7.6 folds higher cumulated Fluc activity (9days) than mRNA
- Levatio's circRNA pipeline & milestones

Anti-viral Efficacy (Cell Line MT-4)

Anti-viral Efficacy against Inhibitor-resistant HIV

Table 3. Antiviral activity in Raltegravir-resistant strains

Compounde	Average IC ₆₀ (range, nM)			
compounds	PBMC	MT-4		
STP0404	0.08 (0.02~0.22)	2.49 (0.95~3.48)		
Zidovubine	7.96 (0.22~20.7)	37.94 (29.7~57.6)		
Raltegravir	1,227.70 (12.5~3,036)	2525 (351~4,322)		
Elvitegravir	-	2751.5 (276~10,000)		
Dolutegravir	-	4.57 (3.07~8.54)		
RAL-resistant strains: 4736 2, 4736 4, 6070 1, 6070 2, 1666 1				

- ✤ 2 ~ 33 times higher anti-viral efficacy than existing treatments
- High Safety Data results over HIV-1
 Therapeutic Index(TI):
 STP0404 > 6,020 wZhile Raltegravir > 2,710
- Existing HIV/AIDS therapies are "inhibitors" of HIV activities
 This induces continuous drug usage & drug resistance

 (+ no drug with new mechanism for over 10 years)
 STP0404 showed anti-viral efficacy even against inhibitor resistant HIV (4 ~ 400 times efficient than Raltegravir)
- Existing HIV/AIDS Drugs' Global Sales (as of 2022)
 - Dolutegravir (GSK) Approx. U\$1.8 Bil.
 - Elvitegravir (Gilead) Approx. U\$2.4 Bil.
 - Raltegravir (MSD) Approx. U\$633 Mil.

STP0404 Mechanism of Action

STP0404 X-ray Structure

Before Injection (A)

- New mechanism ALLINI (Allosteric integrase inhibitor) founded by Prof. M. Kvaratskhelia (Univ. of Colorado) in 2016
- Integrase delivers HIV virus's RNA to host cell, inducing virion state (infection of host cell & capsid protection) (A)
- ALLINI inhibits delivery / merge of integrase with virus's RNA, causing mislocalization of HIV's RNA (B)
- STP0404 pulls the HIV virus's RNA outside the virus-protecting capsid, allowing the formation of non-infectious HIV-1 (B)
- New MOA for HIV-cure as "maturation inhibitor" "Divide and Conquer", not 'Shock & Kill' or 'Block & Lock"
- Identification of ALLINI mechanism supported by US NIH grants in 2018. Collaboration with Emory University & University of Colorado Boulder

Academic Publications and Media Features.

July, 2021

Phase 2 Trial featured as one of "Three Trials to Watch in 2024" (Dec. 18)

AMERICAN SOCIETY FOR MICROBIOLOGY

Features

HIV: Three trials to watch in 2024

After a pivotal vaccine trial failed earlier this year, research into treatment and prevention of HIV continues to be vital.

Abigail Beaney December 18, 2023

Share this article

Longer-acting, less resistant treatment is needed in HIV

ST Pharm's Pirmitegravir is a first-in-class potent HIV-1 allosteric integrase inhibitor (ALLINI) that targets the noncatalytic sites of the viral integrase and interferes with the integrase-viral RNA interaction during viral maturation.

The novel MoA could help in the fight against resistance and could be longer lasting than current therapies which would improve the quality of life for HIV patients.

The Phase IIa, randomised, double-blinded, placebo-controlled, study (NCT05869643) is investigating the antiviral effect, safety, tolerability, and pharmacokinetics of pirmitegravir in treatment-naïve adults.

"This was the first therapy with an ALLINI mechanism of action to reach clinical development," Chisholm says. "In Phase I, pirmitegravir was shown to be well tolerated with a consistent pharmacokinetic profile supporting once-daily dosing. With Phase II data eagerly anticipated, pirmitegravir will be one to watch in 2024."

PLOS PATHOGENS

RESEARCH ARTICLE

A highly potent and safe pyrrolopyridinebased allosteric HIV-1 integrase inhibitor targeting host LEDGF/p75-integrase interaction site

Tatsuya Maehigashi 1°, Seohyun Ahn 2°, Uk-II Kim 2°, Jared Lindenberger 3°, Adrian Oo 1°, Pratibha C. Koneru³, Bijan Mahboubi¹, Alan N. Engelman 0^{4,5}, Mamuka Kvaratskhelia³*, Kyungjin Kim²*, Baek Kim^{1,6}

RETROINTEGRATION 20	23
7 th INTERNATIONAL CONFERENCE ON RETROVIRAL INTEGRA	TION

July 31 - August 4, 2023, Boulder, Colorado, USA

SESSION 4:	East End/West End Conference Room HIV-1 INTEGRASE INHIBITORS AND NOVEL
	ANTIRETROVIRAL COMPOUNDS
Chairperson:	Daniel Adu-Ampratwum, The Ohio State University
8:00 AM - 10:00 AM	Kyungjin Peter Kim ST PHARM, Seoul, Republic of Korea.
20	The Fellowship of the Ring: Quest to develop Pirmitegravir, a novel potent and safe HIV-1 allosteric integrase inhibitor
38	(ALLINI).

Discovery and development of novel pyrrolopyridine derivatives as a highly potent and safe allosteric HIV-1 integrase inhibitor

lan A. Taylor,^d Kyungjin Kim,^e Alan N. Engelman,^{f,g} Baek Kim,^{h,i} ^(b) Juan R. Perilla,^c ^(b) Mamuka Kyaratskhelia,^b ^(b) P

Hypermultimerization and Loss of Function

Uk-II Kim¹, III Young L The Nonclinical & Clinical Development of a Novel Potent Integrase Inhibitor, Pirmitegravir ST PHARM, New DI Institute of Chemical Xue Mena¹, Uk-II Kim¹, Baek Kim^{2,3}, Kyungjin Kim^{1*} * Corresponding Auth ¹ ST PHARM, New Drug Innovation, Seoul, Republic of University, School of Medicine, Department of Pediatrics, Atlanta, Children's Healthcare of Atlanta, Center for Drug Discovery, States * Corresponding Author

Thank You

<u>s</u>

A LIN

8

ST PHARM

Technology-Driven Gene therapy CDMO From Oligonucleotide to xRNA